How do planets help us understand stars?
Sabina Sagynbayeva1,2, Will M. Farr¹,2, Rodrigo Luger ${ }^{2}$
${ }^{1}$ Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA ${ }^{2}$ Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

The wealth of Kepler data made it possible to study exoplanets-hosting stars. Many of the light curves that we get from Kepler or TESS are variable, often due to star spots, and other surface features that rotate into and out of view over the course of a stellar rotation. Using multiple light
curves from Kepler, we are interested in mapping the surfaces of the exoplanet-hosting stars. Even though these stars are unresolved, we can in principle use their light curves to learn about what their surfaces look like by understanding the physical parameters of star spots. This can be efficiently done using hierarchical Bayesian modeling treating the star spots as a statistical population and using the exoplanet to put constraints on our statistical model. We are considering the properties of the star spots as hyperparameters of our Gaussian Process (GP) model. We use multiple stellar light curves to perform the ensemble statistics with the software Starry and its statistical adaptation, StarryProcess.

 P(Datal

P(MODEL

Parameters:

We consider three sets of parameters: spot parameters, star's parameters, and planet's parameters:

The spot parameters, which are also the hyperparameters of the GP kernel, include: number of spots, contrast, mean and standard deviation of the latitude distribution and a radius of a spot:

$$
\Theta=\left(\theta_{\bullet}, \theta_{\star}, \theta_{p}\right)
$$

The star parameters include stellar inclination, mass of a star, limb darkening coefficients, and rotational period:

The planet parameters are: inclination, eccentricity, spin-orbit misalignment angle, argument of pericenter, period, transit time, planet-to-star radii ratio:

$$
\theta_{\bullet}=\left(n, c, \mu_{\phi}, \sigma_{\phi}, r\right)
$$

$\theta_{\star}=\left(i_{\star}, m_{\star}, u_{1}, u_{2}, P_{\star}\right)$

$$
\theta_{p}=\left(i_{p}, e, \psi, \omega, P, t_{0}, R_{p} / R_{\star}\right)
$$

Given the GP prior and the likelihood function, we can calculate the joint posterior distribution over the hyperparameters Θ and the true function $f_{\text {true }}$ given the observed data $f_{\text {obs }}$:

$$
p\left(\Theta, \mathbb{F}_{\text {true }} \mid \mathbb{F}_{\text {obs }}\right) \propto p(\Theta) p\left(\mathbb{F}_{\text {true }} \mid \Theta\right) p\left(\mathbb{F}_{\text {obs }} \mid \mathbb{F}_{\text {true }}\right)
$$

We calculate the log-likelihood function, given by: $\ln p\left(f_{\text {obs }} \mid \Theta\right)=-\frac{1}{2}\left(f_{\text {obs }}-\mu\right)^{T} \Sigma^{-1}\left(f_{\text {obs }}-\mu\right)-\frac{1}{2} \ln |\Sigma|-\frac{n}{2} \ln 2 \pi$

Results. Synthetic light curve:

In this experiment, we have a synthetic light curve with one transit. Here, we solve for the spots parameters (the corner plot is shown on the right).

${ }^{30}$ onatit.ae aceal

The synthetic light curve with one transit crossing multiple spots. The black points show the light curve with binning the out-of-transit points. The orange points show the full light curve.

Here, we do inference on a map with a star with only one spot to see planetary transit helps to constrain that spot.

Results of L2 regularization inference in pixel space. a) the true map; b) inferred map with no planet; c) inferred map with one transit; d) inferred map with 10 transits. It shows that more transits give us better constraints on the parameters of spots.

References:

Luger et al. 2021, AJ, 162, 123
Luger et al. 2021, AJ, 162, 124

